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Let Mn be the algebra of all n × n complex matrices. For a matrix A ∈ Mn the set

NR[A] = {x∗Ax : x ∈ C
n , x∗x = 1 } (A.1)

is called numerical range or field of values of A, R.Horn-C.Johnson, see ”Topics in

Matrix Analysis”, pp. 1-88.

In Chapter 1 of the thesis, the NR[A] is expressed as the union of the numerical ranges

of matrices of dimensions k × k, for 2 ≤ k < n, and it is proved that

NR[A] =
⋃

ξ1,...,ξk

NR(









ξ∗1Aξ1 . . . ξ∗1Aξk

...
...

ξ∗kAξ1 . . . ξ∗kAξk









),

where ξ1, . . . , ξk run over all sets of k orthonormal vectors of C
n. In this way, each set

in the union can be considered as an inner approximation or compression of NR[A] .

Since NR[A] and NR[e2 i θĀ ] are symmetric with respect to the straight line y =

(tan θ) x, we have proved that

Co {NR[A] ∪ NR[e2 i θĀ ]} = NR (
1

2

[

A + e2iθĀ −i(A − e2iθĀ )

i(A − e2iθĀ ) A + e2iθĀ

]

) (A.2)

where 0 ≤ θ ≤ π. Therefore, NR[A] is presented as the intersection of numerical

ranges of 2n × 2n matrices on the left side in (A.2) as the line y rotates around the

origin. Moreover, for θ = 0 (A.2) leads to the equality

Co {NR[A] ∪ NR[Ā ]} = NR

[

M N

−N M

]

where M, N ∈ Rn×n are defined by A = M + iN, and NR[A] lies inside the numerical

range of a real matrix.

These results can be generalized if we replace in (A.1) the euclidean inner product with

the indefinite scalar product on C
n, since there exists an invertible hermitian matrix S,

such that < x , y >S = y∗Sx. The S-numerical range of A is defined through

WS[A] = { < Ax, x >S

< x, x >S

: x ∈ C
n < x, x >S 6= 0 } = W+

S [A] ∪ W+
−S[A],
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where

W+
S [A] = {< Ax, x >S : x ∈ C

n, < x, x >S = 1 }.

We present some new properties of W+
S [A], and we show that for any indefinite hermitian

matrix S,

NR[A] ∩ W+
S [A] 6= ∅.

Moreover, if the hermitian matrix S has at least one positive eigenvalue then

W+
I2⊗S[A ⊕ B] = Co {W+

S [A] ∪ W+
S [B] }. (A.3)

By (A.3) we lead to equality

Co {W+
S [A] ∪ W+

S [ e2iθĀ ] } = W+
I2⊗S(

1

2

[

A + e2iθĀ −i(A − e2iθĀ)

i(A − e2iθĀ) A + e2iθĀ

]

)

where 0 ≤ θ ≤ π. The two last equalities yield

W+
I2⊗S(

[

A O

O Ā

]

) = W+
I2⊗S(

[

M N

−N M

]

),

where θ = 0 and A = M + iN , M, N ∈ Rn×n.

In Chapter 2 the approximation of numerical range of normal matrix A is investiga-

ted. Let λ1 , λ2 , . . . , λk ( k ≤ n ) be eigenvalues of a normal matrix A ∈ Mn such that

NR[A] = Co{λ1 , . . . , λk } and x1 , x2 , . . . , xk be the corresponding orthonormal eige-

nvectors of A. For a given unit vector υ =
k

∑

j =1

cjxj , |cj| 6= 0 the point υ∗Aυ belongs

to int NR[A]. Denoting E = span{ υ } as subspace of W = span{x1 , x2 , . . . , xk }, we

consider the n× (k − 1) matrix P = [w1 w2 . . . wk−1 ] where w1 , w2 , . . . , wk−1 is an

orthonormal basis of E⊥
W . Evidently, P ∗P = Ik−1 and PP ∗ is an orthogonal projector

onto E⊥
W . It is proved that

NR[P ∗AP ] ⊂ < λ1 , λ2 , . . . , λk >

and ∂NR[P ∗AP ] is tangent to all the edges of the polygon at the points

ρτ =
|cτ+1|2 λτ + |cτ |2 λτ+1

|cτ+1|2 + |cτ |2
(τ = 1, . . . , k − 1) ; ρk =

|c1|2 λk + |ck|2 λ1

|c1|2 + |ck|2
.
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Further, we structure a matrix P1, such that ∂ NR[P ∗
1 AP1] is supported by some edges

of ∂ NR[A].

The inverse problem, where NR[G] is approximated outside a polygon, is investigated

further. Indeed, let

D̂ = diag(
p1 + p2 + 3iq2

2
, p1 + iq2 , p1 + iq1 ,

p1 + p2 + 3iq1

2
, p2 + iq1 , p2 + iq2 ),

where H(G) , S(G) are the hermitian parts of G = H(G) + i S(G), and we denote

p1 = λmin(H(G)) , p2 = λmax(H(G)) , q1 = λmin(S(G)) , q2 = λmax(S(G)).

Then we show how the NR[G] is dilated to a circumscribed hexagon defined by D̂ .

In Chapter 3 we consider the matrices A1, A2, . . . , Ak ∈ Mn and the joint numerical

range defined by the set

JNR[A1, . . . , Ak] = {( x∗A1x , x∗A2x , . . . , x∗Akx ) : x ∈ C
n , x∗x = 1 }.

This is also called k-dimensional field of k matrices and, clearly, for k = 1 the joint

numerical range is identified with the numerical range of the matrix A1. In the sequel,

it will be denoted by JNR[Am]km=1 . The joint numerical range is always a compact and

connected set, but it is not always convex. The convexity of the joint numerical range is

known for hermitian matrices when n = k = 2 and n ≥ 3 , k ≤ 3. Here, we refer

to some new properties of JNR[Am]km=1 , and it is proved that for a family of linearly

independent hermitian bordered matrices of the form

Sm =















am1 am2 . . . amn

ām2 0 . . . 0
...

... O

āmn 0















; m = 1, . . . , k

for n ≥ 3 and 3 ≤ k ≤ 2n − 1 , JNR[Sm]km=1 is an hyperellipsoid in R
k with ce-

nter 1
2
(a11 , . . . , ak1) and nonempty interior. Analogue results are formulated for special

3 × 3 tridiagonal matrices or (2µ − 1)-diagonal hermitian matrices, since such matrices

are presented in Graph Theory.

In the last chapter, let C[z] be the algebra of polynomials in one variable z with coeffi-

cients in C , and let

W (z) =

[

pij(z)

qij(z)

]n

i,j=1

(A.4)
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be a n× n rational matrix function, where the elements pij(z), qij(z) ∈ C[z] and qij(z)

are not identically zero. Denoting m(z) = l.c.m.{qij(z) : i, j = 1, . . . , n} we have,

W (z) = m(z)−1P (z), (A.5)

where P (z) = Amzm+Am−1z
m−1+. . .+A1z+A0 is a matrix polynomial and deg{m(z)} ≥

deg{P (z)}. For W (z) in (A.4), the set

NR[W (z)] = {z ∈ C\σ(m) : x∗W (z)x = 0, for some nonzero x ∈ C
n},

is known as the numerical range of W (z) , where σ(m) is the spectrum of m(z). By

(A.5) we obtain

NR[W (z)] = NR[P (z)]\σ(m)

where

NR[P (z)] = { z ∈ C : x∗P (z)x = 0 , for some nonzero x ∈ C
n }.

The bounds of NR[P (λ)] are known, and thus we obtain a location for the rational matrix

function. Furthermore, denoting σ(W ) = {z : det W (z) = 0} the spectrum of W (z) ,

and for z0 ∈ σ(W ), there exists a nonzero vector x0 ∈ C
n , such that W (z0)x0 = 0.

Hence, z0 ∈ NR[W (z)], i.e. σ(W ) ⊂ NR[W (z)]. Moreover, NR[W (z)] is not always

closed. Finally, a location of the derivative of the numerical range of a rational matrix

function is investigated, and we see that if the roots of m(z) are interior points of the

ring ∆2(0 : r1, R1) , and NR[P (λ)] belongs to the ring ∆1 ( 0 : r , R ) , then NR[W
′

(z)]

lies in the ring

D1 = {z : min{( r1 , r − R1 } ≤ |z| ≤ n2 R + n1R1

n2 − n1

}, when r > R1,

or it is subset of the ring

D2 = {z : min{ r , r1 − R } ≤ |z| ≤ max{R1 ,
n2 R + n1R1

n2 − n1

} },

when R < r1. Then, these results are applied on the connectedness of NR[W (z)] .
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