Numerical Range of Matrices of Special Form
 by
 Maria Adam

Let \mathcal{M}_{n} be the algebra of all $n \times n$ complex matrices. For a matrix $A \in \mathcal{M}_{n}$ the set

$$
\begin{equation*}
\operatorname{NR}[A]=\left\{x^{*} A x: x \in \mathbb{C}^{n}, \quad x^{*} x=1\right\} \tag{A.1}
\end{equation*}
$$

is called numerical range or field of values of A, R.Horn-C.Johnson, see "Topics in Matrix Analysis", pp. 1-88.
In Chapter 1 of the thesis, the $\operatorname{NR}[A]$ is expressed as the union of the numerical ranges of matrices of dimensions $k \times k$, for $2 \leq k<n$, and it is proved that

$$
\operatorname{NR}[A]=\bigcup_{\xi_{1}, \ldots, \xi_{k}} \operatorname{NR}\left(\left[\begin{array}{ccc}
\xi_{1}^{*} A \xi_{1} & \ldots & \xi_{1}^{*} A \xi_{k} \\
\vdots & & \vdots \\
\xi_{k}^{*} A \xi_{1} & \ldots & \xi_{k}^{*} A \xi_{k}
\end{array}\right]\right),
$$

where ξ_{1}, \ldots, ξ_{k} run over all sets of k orthonormal vectors of \mathbb{C}^{n}. In this way, each set in the union can be considered as an inner approximation or compression of $\operatorname{NR}[A]$.
Since $\operatorname{NR}[A]$ and $\operatorname{NR}\left[e^{2 i \theta} \bar{A}\right]$ are symmetric with respect to the straight line $y=$ $(\tan \theta) x$, we have proved that

$$
\operatorname{Co}\left\{\operatorname{NR}[A] \cup \operatorname{NR}\left[e^{2 i \theta} \bar{A}\right]\right\}=\operatorname{NR}\left(\frac{1}{2}\left[\begin{array}{cc}
A+e^{2 i \theta} \bar{A} & -i\left(A-e^{2 i \theta} \bar{A}\right) \tag{A.2}\\
i\left(A-e^{2 i \theta} \bar{A}\right) & A+e^{2 i \theta} \bar{A}
\end{array}\right]\right)
$$

where $0 \leq \theta \leq \pi$. Therefore, $\operatorname{NR}[A]$ is presented as the intersection of numerical ranges of $2 n \times 2 n$ matrices on the left side in (A.2) as the line y rotates around the origin. Moreover, for $\theta=0$ (A.2) leads to the equality

$$
\operatorname{Co}\{\operatorname{NR}[A] \cup \operatorname{NR}[\bar{A}]\}=\operatorname{NR}\left[\begin{array}{cc}
M & N \\
-N & M
\end{array}\right]
$$

where $M, N \in \mathbb{R}_{n \times n}$ are defined by $A=M+i N$, and $\operatorname{NR}[A]$ lies inside the numerical range of a real matrix.
These results can be generalized if we replace in (A.1) the euclidean inner product with the indefinite scalar product on \mathbb{C}^{n}, since there exists an invertible hermitian matrix S, such that $<x, y>_{S}=y^{*} S x$. The S-numerical range of A is defined through

$$
W_{S}[A]=\left\{\frac{<A x, x>_{S}}{\left\langle x, x>_{S}\right.}: \quad x \in \mathbb{C}^{n} \quad<x, x>_{S} \neq 0\right\}=W_{S}^{+}[A] \cup W_{-S}^{+}[A]
$$

where

$$
W_{S}^{+}[A]=\left\{<A x, x>_{S}: x \in \mathbb{C}^{n},<x, x>_{S}=1\right\} .
$$

We present some new properties of $W_{S}^{+}[A]$, and we show that for any indefinite hermitian matrix S,

$$
\operatorname{NR}[A] \cap W_{S}^{+}[A] \neq \emptyset
$$

Moreover, if the hermitian matrix S has at least one positive eigenvalue then

$$
\begin{equation*}
W_{I_{2} \otimes S}^{+}[A \oplus B]=\operatorname{Co}\left\{W_{S}^{+}[A] \cup W_{S}^{+}[B]\right\} \tag{A.3}
\end{equation*}
$$

By (A.3) we lead to equality

$$
\mathrm{Co}\left\{W_{S}^{+}[A] \cup W_{S}^{+}\left[e^{2 i \theta} \bar{A}\right]\right\}=W_{I_{2} \otimes S}^{+}\left(\frac{1}{2}\left[\begin{array}{cc}
A+e^{2 i \theta} \bar{A} & -i\left(A-e^{2 i \theta} \bar{A}\right) \\
i\left(A-e^{2 i \theta} \bar{A}\right) & A+e^{2 i \theta} \bar{A}
\end{array}\right]\right)
$$

where $0 \leq \theta \leq \pi$. The two last equalities yield

$$
W_{I_{2} \otimes S}^{+}\left(\left[\begin{array}{cc}
A & O \\
O & \bar{A}
\end{array}\right]\right)=W_{I_{2} \otimes S}^{+}\left(\left[\begin{array}{rr}
M & N \\
-N & M
\end{array}\right]\right),
$$

where $\theta=0$ and $A=M+i N, M, N \in \mathbb{R}_{n \times n}$.

In Chapter 2 the approximation of numerical range of normal matrix A is investigated. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}(k \leq n)$ be eigenvalues of a normal matrix $A \in \mathcal{M}_{n}$ such that $\operatorname{NR}[A]=\operatorname{Co}\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ and $x_{1}, x_{2}, \ldots, x_{k}$ be the corresponding orthonormal eigenvectors of A. For a given unit vector $v=\sum_{j=1}^{k} c_{j} x_{j},\left|c_{j}\right| \neq 0$ the point $v^{*} A v$ belongs to int $\operatorname{NR}[A]$. Denoting $E=\operatorname{span}\{v\}$ as subspace of $W=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, we consider the $n \times(k-1)$ matrix $P=\left[\begin{array}{llll}w_{1} & w_{2} & \ldots & w_{k-1}\end{array}\right]$ where $w_{1}, w_{2}, \ldots, w_{k-1}$ is an orthonormal basis of E_{W}^{\perp}. Evidently, $P^{*} P=I_{k-1}$ and $P P^{*}$ is an orthogonal projector onto E_{W}^{\perp}. It is proved that

$$
N R\left[P^{*} A P\right] \subset \overline{<\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}>}
$$

and $\partial \mathrm{NR}\left[P^{*} A P\right]$ is tangent to all the edges of the polygon at the points

$$
\rho_{\tau}=\frac{\left|c_{\tau+1}\right|^{2} \lambda_{\tau}+\left|c_{\tau}\right|^{2} \lambda_{\tau+1}}{\left|c_{\tau+1}\right|^{2}+\left|c_{\tau}\right|^{2}} \quad(\tau=1, \ldots, k-1) \quad ; \quad \rho_{k}=\frac{\left|c_{1}\right|^{2} \lambda_{k}+\left|c_{k}\right|^{2} \lambda_{1}}{\left|c_{1}\right|^{2}+\left|c_{k}\right|^{2}}
$$

Further, we structure a matrix P_{1}, such that $\partial \mathrm{NR}\left[P_{1}^{*} A P_{1}\right]$ is supported by some edges of $\partial \mathrm{NR}[A]$.
The inverse problem, where $\operatorname{NR}[G]$ is approximated outside a polygon, is investigated further. Indeed, let

$$
\hat{D}=\operatorname{diag}\left(\frac{p_{1}+p_{2}+3 i q_{2}}{2}, p_{1}+i q_{2}, p_{1}+i q_{1}, \frac{p_{1}+p_{2}+3 i q_{1}}{2}, p_{2}+i q_{1}, p_{2}+i q_{2}\right)
$$

where $H(G), S(G)$ are the hermitian parts of $G=H(G)+i S(G)$, and we denote $p_{1}=\lambda_{\min }(H(G)), p_{2}=\lambda_{\max }(H(G)), q_{1}=\lambda_{\min }(S(G)), q_{2}=\lambda_{\max }(S(G))$.
Then we show how the $\operatorname{NR}[G]$ is dilated to a circumscribed hexagon defined by \hat{D}.

In Chapter 3 we consider the matrices $A_{1}, A_{2}, \ldots, A_{k} \in \mathcal{M}_{n}$ and the joint numerical range defined by the set

$$
\operatorname{JNR}\left[A_{1}, \ldots, A_{k}\right]=\left\{\left(x^{*} A_{1} x, x^{*} A_{2} x, \ldots, x^{*} A_{k} x\right): x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

This is also called k-dimensional field of k matrices and, clearly, for $k=1$ the joint numerical range is identified with the numerical range of the matrix A_{1}. In the sequel, it will be denoted by $\operatorname{JNR}\left[A_{m}\right]_{m=1}^{k}$. The joint numerical range is always a compact and connected set, but it is not always convex. The convexity of the joint numerical range is known for hermitian matrices when $n=k=2$ and $n \geq 3, k \leq 3$. Here, we refer to some new properties of $\operatorname{JNR}\left[A_{m}\right]_{m=1}^{k}$, and it is proved that for a family of linearly independent hermitian bordered matrices of the form

$$
S_{m}=\left[\begin{array}{cccc}
a_{m 1} & a_{m 2} & \ldots & a_{m n} \\
\bar{a}_{m 2} & 0 & \ldots & 0 \\
\vdots & \vdots & \mathrm{O} & \\
\bar{a}_{m n} & 0 & &
\end{array}\right] ; m=1, \ldots, k
$$

for $n \geq 3$ and $3 \leq k \leq 2 n-1, \operatorname{JNR}\left[S_{m}\right]_{m=1}^{k}$ is an hyperellipsoid in \mathbb{R}^{k} with center $\frac{1}{2}\left(a_{11}, \ldots, a_{k 1}\right)$ and nonempty interior. Analogue results are formulated for special 3×3 tridiagonal matrices or $(2 \mu-1)$-diagonal hermitian matrices, since such matrices are presented in Graph Theory.
In the last chapter, let $\mathbb{C}[z]$ be the algebra of polynomials in one variable z with coefficients in \mathbb{C}, and let

$$
\begin{equation*}
W(z)=\left[\frac{p_{i j}(z)}{q_{i j}(z)}\right]_{i, j=1}^{n} \tag{A.4}
\end{equation*}
$$

be a $n \times n$ rational matrix function, where the elements $p_{i j}(z), q_{i j}(z) \in \mathbb{C}[z]$ and $q_{i j}(z)$ are not identically zero. Denoting $m(z)=$ l.c.m. $\left\{q_{i j}(z): \quad i, j=1, \ldots, n\right\}$ we have,

$$
\begin{equation*}
W(z)=m(z)^{-1} P(z), \tag{A.5}
\end{equation*}
$$

where $P(z)=A_{m} z^{m}+A_{m-1} z^{m-1}+\ldots+A_{1} z+A_{0}$ is a matrix polynomial and $\operatorname{deg}\{m(z)\} \geq$ $\operatorname{deg}\{P(z)\}$. For $W(z)$ in (A.4), the set

$$
\operatorname{NR}[W(z)]=\left\{z \in \mathbb{C} \backslash \sigma(m): x^{*} W(z) x=0, \text { for some nonzero } x \in \mathbb{C}^{n}\right\}
$$

is known as the numerical range of $W(z)$, where $\sigma(m)$ is the spectrum of $m(z)$. By (A.5) we obtain

$$
\mathrm{NR}[W(z)]=\mathrm{NR}[P(z)] \backslash \sigma(m)
$$

where

$$
\operatorname{NR}[P(z)]=\left\{z \in \mathbb{C}: x^{*} P(z) x=0, \quad \text { for some nonzero } \quad x \in \mathbb{C}^{n}\right\}
$$

The bounds of $\mathrm{NR}[P(\lambda)]$ are known, and thus we obtain a location for the rational matrix function. Furthermore, denoting $\sigma(W)=\{z: \operatorname{det} W(z)=0\}$ the spectrum of $W(z)$, and for $z_{0} \in \sigma(W)$, there exists a nonzero vector $x_{0} \in \mathbb{C}^{n}$, such that $W\left(z_{0}\right) x_{0}=0$. Hence, $z_{0} \in \operatorname{NR}[W(z)]$, i.e. $\sigma(W) \subset \operatorname{NR}[W(z)]$. Moreover, $\operatorname{NR}[W(z)]$ is not always closed. Finally, a location of the derivative of the numerical range of a rational matrix function is investigated, and we see that if the roots of $m(z)$ are interior points of the ring $\Delta_{2}\left(0: r_{1}, R_{1}\right)$, and $\operatorname{NR}[P(\lambda)]$ belongs to the ring $\Delta_{1}(0: r, R)$, then $\operatorname{NR}\left[W^{\prime}(z)\right]$ lies in the ring

$$
D_{1}=\left\{z: \min \left\{\left(r_{1}, r-R_{1}\right\} \leq|z| \leq \frac{n_{2} R+n_{1} R_{1}}{n_{2}-n_{1}}\right\}, \quad \text { when } \quad r>R_{1}\right.
$$

or it is subset of the ring

$$
D_{2}=\left\{z: \min \left\{r, r_{1}-R\right\} \leq|z| \leq \max \left\{R_{1}, \frac{n_{2} R+n_{1} R_{1}}{n_{2}-n_{1}}\right\}\right\}
$$

when $R<r_{1}$. Then, these results are applied on the connectedness of $\operatorname{NR}[W(z)]$.

Bı $\beta \lambda \iota o \gamma \rho \alpha \varphi i ́ \alpha$

[A] T.Ando, Structure of operators with numerical radius one, Acta Sci. Math. (Szeged), 34 (1973), 11-15.
[AL] T.Ando and C.K.Li, The numerical range and numerical radii, Linear and Multilinear Algebra, 37 (1994), 1-3.
[AT] Y.H.Au-Yeung and N.K.Tsing, An extension of the Hausdorff-Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc., 89, (1983), 215-218.
[B] T.Bayasgalan, The numerical range of linear operators in spaces with an indefinite metric, Acta Math. Hungar. 57 (1991), 7-9.
[BFL] P.Binding, D.R.Farenick and C.K.Li, A dilation and norm in several variable operator theory, Canadian J. Math., 47, (1995), 449-461.
[BL] P.Binding and C.K.Li, Joint ranges of hermitian matrices and simultaneous diagonalization, Linear Algebra and Applics, 151, (1991), 157-167.
[BR] R.A.Brualdi and H.J.Ryser, Combinatorial Matrix Theory, Cambridge University Press, 1991.
[C] M.T.Chien, On the numerical range of tridiagonal operators, Linear Algebra and Applics, 246, (1996), 203-214.
[CL] M.D.Choi and C.K.Li, Numerical Ranges and Dilations, Linear and Multilinear Algebra, 47, (2000), 35-48.
[F] D.R.Farenick, Matricial Extensions of the Numerical Range: A Brief Survey, Linear and Multilinear Algebra, 34, (1993), 197-211.
[GLR1] I.Gohberg, P.Lancaster and L.Rodman, Matrix Polynomials, Academic Press, 1982.
[GLR2] I.Gohberg, P.Lancaster and L.Rodman, Matrices and indefinite scalar products, Operator Theory and Advances Applics, 8, Birkhauser, 1983.
[GR] K.Gustafson and D.Rao, Numerical Range, The field of values of linear operators and matrices, Springer, 1995.
[H] F.Hausdorff, Der Wertvorrat einer Bilinearform, Math. Zeit., 3, (1919), 314-316.
[HJ] R.Horn and C.Johnson, Topics in matrix analysis, Cambridge University Press, 1991.
[HL] K.Harbath and H.Langer, A factorization theorem for operator pencils, Integral Equations and Operator Theory, 2, (1979), 344-363.
[K] R.Kippenhahn, Über den Wertevorrat einer matrix, Math. Nachr., 6 (1951), 193-228.
[KRS] D.S.Keeler, L.Rodman and I.M.Spitkovsky, The numerical range of 3 x 3 matrices, Linear Algebra and Applics, 252, (1997), 115-139.
[LMZ] P.Lancaster, J.Maroulas and P.Zizler, The numerical range of selfadjoint matrix polynomials, Oper. Theory, Advances and Applics, 106, Birkhauser, Basel, (1998), 291-304.
[LTU] C.K.Li, N.K.Tsing and F.Uhlig, Numerical ranges of an operator on an indefinite inner product space, Electronic Journal of Linear Algebra, 1, (1996), 1-17.
[LP] C.K.Li and Y.T.Poon Convexity of the Joint numerical range, SIAM J. on Matrix Analysis and Applics, 21, (2000), 668-678.
[LaR] P.Lancaster and L.Rodman, Algebraic Riccati Equations, Clarendon Press, Oxford, 1995.
[LR1] C.K.Li and L.Rodman, Numerical range of matrix polynomials, SIAM J. on Matrix Analysis and Applics, 15, (1994), 1256-1265.
[LR2] C.K.Li and L.Rodman, Shapes and computer generation of numerical ranges of Krein space operators, Electronic Journal of Linear Algebra, 3, (1998), 31-47.
[Md] M.Marden, Geometry of Polynomials, American Mathematical Society, RI, 1966.
[Mk] A.Markus, Introduction to Spectral Theory of Polynomial Operator Pencils, American Mathematical Society, Providence, RI, 1988.
[M1] B.A.Mirman, Numerical range and norm of a linear operator, Voronež. Gos. Univ. Trudy Sem. Functional Anal., 10, (1968), 51-55.
[M2] B.Mirman, Numerical ranges and Poncelet curves, Linear Algebra and its Applics, 281, (1998), 59-85.
[Mo] J.J. Modi, Parallel Algorithms and Matrix Computation, Clarendon Press, Oxford, 1990.
[MP] M.Marcus and C.Pesce, Computer generated numerical ranges and some resulting theorems, Linear and Multilinear Algebra, 20 (1987), 121-157.
[MMP] A.Markus, J.Maroulas and P.Psarrakos, Spectral properties of a matrix polynomial connected with a component of its numerical range, Operator Theory, Advances and Applics, 106, (1998), 305-308.
[MP1] J.Maroulas and P.Psarrakos, Geometrical properties of numerical range of matrix polynomials, Computers Math. Applics, 31, N.4/5 (1996), 41-47.
[MP2] J.Maroulas and P.Psarrakos, The boundary of numerical range of matrix polynomials, Linear Algebra and Applics, 267, (1997), 101-111.
[MP3] J.Maroulas and P.Psarrakos, A connection between numerical ranges of Selfadjoint matrix polynomials, Linear and Multilinear Algebra, 44, (1998), 327-340.
[MP4] J.Maroulas and P.Psarrakos, On the connectedness of numerical range of matrix polynomials, Linear Algebra and Applics, 280, (1998), 97-108.
[MP5] J.Maroulas and P.Psarrakos, On factorization of matrix polynomials, Linear Algebra and Applics, 304, (2000), 131-139.
[MPT] J.Maroulas, P.Psarrakos and M.Tsatsomeros, Perron-Frobenius type results on the numerical range, Linear Algebra and Applics.
[PT] P.Psarrakos and M.Tsatsomeros, On the relation between the numerical range and the joint numerical range of matrix polynomials, Electronic Journal of Linear Algebra, 6, (2000), 20-30.
[T] O.Toeplitz, Das algebraische Analogon zu einem Satze von Fejer, Math. Zeit. , 2, (1918), 187-197.
[W] J.P.Williams, On compressions of matrices, J. London Math. Soc.(2), 3, (1971), 526-530.

